Operational Excellence within a Low Volume High Mix business

Andrea Forzenigo

1

25/03/2015

Low Volume-High Mix Production

Characteristics low volume high mix business:

- Volume max 100 / 200 equipment's per year per platform type;
- Orders managed by project as:
 - Configured to Order
 - Engineered to Order
- Technology evolution as competitive factor;
- Customer needs adaptation as competitive factor.

The challenges for a low volume high mix, like the one above described, is to drive quality and efficiency continuous improvement while:

- Allowing a competitive time to market on new technology;
- Maintaining a wide portfolio offering

Complete Lines for Beverage Industry

Complete Lines for Beverage Industry

25/03/2015

Lean – Six Sigma - Modularity

A set of methodologies to continuously eliminate Non-Value added tasks, to deliver consistently more Value to Customers while leveraging flexible product platforms tailored for all market needs

The Lean and Six Sigma journey

Lines Efficiency

5S, Std Work, Visual Mgmt., Skill Matrix, TPM, SMED, OEE

CUSTOMER'S	Lean on Installation 5S, Std Work, Visual Mgmt., Fishbone Diagram, Skill Matrix							
ADMINISTRATIVE					V	Lean SM, Voice of C	Office Customer	
ENGINEERING					[DMAIC: FMEA	6 σ , DOE,	
PRODUCTION SUPPLIERS	Lean on Assembly 5S, Std Work, Visual Mgmt., Fishbone Diagram, Level Loading, Skill Matrix, One Piece Flow				Lean on Manufacturing TPM, SMED and OEE			
	2008	2009	2010	2011	2012	2013	2014	2015

Lean Manufacturing

What did we achieve so far with Lean...

Thanks to the strong **commitment of our resources** to the LEAN methods, we succeeded in:

- Better quality and punctuality of our products
- Faster delivery
- Higher efficiency

...as LEAN is a continuous improvement methodology, we will keep going!

What did we achieve internally...

Never give up these principles...

1) FLOW THE PRODUCT

... even if it weights 15 to 30tons

2) MANAGE BY HOUR

... even if it has 1000 to 5000h of assembly

3) MAKE IT VISUAL

...to identify the anomalies Vs. the std. and take prompt actions

What did we achieve at the customer sites...

Data based on similar equipment lines.

Major initiatives at customer sites

Internal Standard Procedure for installation, to identify the main deviance causes:

- Importance of a strong installation support team for machine handling and positioning
- Equipment's packaging and handling tools (crane, forklift...) improvement
- Readiness of site: civil works not finished (road, building), lack of power or temporary energies, lighting, poor arrangement of parts storage room (too distant, not lockable...)

Daily Work Organization:

- Morning and Evening Meetings led by ISM and involving Team Leader, Customer resources and FSE's;
- Focus on Hour by Hour Management.

Seminars with customers focusing on Lean and site activities preparation:

- Importance of site preparation and readiness;
- Forecast of utilities availability (main impact on the overall lead time).

Lean team participating to project reviews on regular basis and site visit.

Six Sigma

New Product Dev. VSM

LT

71%

13%

12%

PT

81%

15%

New Product Development Process

Modules Standard Criticity Levels

Classical Approach (Product Design)

Set Based Concurrent Design

What is better design with Six Sigma?

From:

- Specifications not well formalized
- Design based on "expert knowledge"
- Trials based on customers field test
- Late redesign loops

To DMAIC applied to critical modules:

Define:

- SIPOC / VSM (Process Mapping)
- KPOV's (Key Process Output Variables) Definition
- VOC-CTQ's

Measure:

- Input / Output Analysis
- C&E Matrix FMEA
- Gauge R&R
- Capability Analysis

<u>Analyze</u>

- Statistical tools matrix (Discrete vs. Variables)
- Hypothesis Testing basic overview

Improve:

DOE Introduction

Control:

- Protocol & validation
- Control chart
- Std & Docs

How

How did we get organized...

- An internal team of 6 people as a reference for the lean & six sigma practices. They rotate to normal business positions every 2-3 years.
- An internal lean & six sigma academy to train and certify:
 - 8-10 new Lean Specialist per year (more than 30 Lean Specialist certified);
 - 9-12 Green Belt and Black Belt for six sigma.

They are than employed in normal operating roles changing the organization from the inside.

- An internal "service factory", with a 2 days training module for managers (more than 100 managers trained including CEO end EVP's up to now).
- Initially, monthly review with CEO and EVP's on process improvement.
- Lean KPI included in company and personal balance score card for bonuses

Lean deployment ... few tips

Lean within low volume and high mix business

Several people think that lean methods work only in high flow business...

...WRONG!

In good companies with high flow business, it's normally easy to reach a fair level of efficiency...so lean just helps getting to the next level; being low volume-high mix business more complex to organize, lean

techniques can lead to at least twice the improvement vs. high flow business!

Lean & office processes

There is no limit to the office processes where you can apply lean: administrative, controlling, engineering, commercial...the pay off at the first shot it's normally > 30% on Lead Time and Efficiency and it is more relevant than in production.

Lean deployment ... few tips

Lean competencies external Vs. internal

External support with consultant it's normally necessary at the beginning of the lean journey.

To guarantee the success, it is fundamental to develop an internal centre of Lean competencies and deploy Lean experts within the organization, to drive the change and sustain the continuous improvement.

Lean & Top Mgmt.

To successfully foster the continuous improvement mentality, the CEO and the EVP's have to be fully supportive of the initiative, have a basic understanding of the methodology, review the progress on regular basis plus measure and reward the organization for the success.

Modular Design

Standardization vs. Modularization

STANDARDIZATION

..."ONE SIZE FITS ALL" APPROACH... ...DRIVEN BY MANUFACTURING... ...FROM A JUNGLE OF SOLUTIONS TO A SELECTED AND PRUNED ONE... ...REDUCING OFFERING TO OUR CUSTOMERS!

MODULARIZATION

..."ALL IN ONE" (ARCHITECTURE)!!! ...DRIVEN BY CUSTOMERS NEEDS... ...FROM A JUNGLE OF NEEDS TO THE IDENTIFICATION OF KEY DRIVERS... ...ENLARGING OFFERING TO OUR CUSTOMERS WHILE REDUCING INTERNAL COMPLEXITY!!!

Typical modular architecture goals

EFFICIENCY

REDUCING PART NUMBER COUNT (PNC) WHILE INCREASING OFFERING REDUCING PART NUMBER INTRODUCTION (PNI) WITH STRICT GOVERNANCE INCREASING CONFIGURABILITY REDUCING LEAD TIMES REDUCING TIME TO MARKET REDUCING WARRANTY COST

A SET OF DEFINED GOALS HAS BEEN IDENTIFIED FOR EACH MODULAR ARCHITECTURE PROJECT.

Product strategies

Modularity = interfaces

Interfaces are isolating the modules in their strategic circle

Define implication of modular set up on Product and Production

Product Implication	Frequent product changes new technology	Few product changes and high volume	Frequent product changes and low volume
Production Implication	Close cooperation between development and production	Minimized production cost	Cooperation between development and production
Production Strategy	In-house production	Low cost country, lean production	Strategic supplier, agile production

Modularity KPIs

part numbers

Modularity

$$M_{\%} = \frac{P_{\nu} - M_{\nu}}{P_{\nu}} \cdot 100$$

- M_v = module variants P_v = product variants
- Calculated for every module

Modularity KPIs – PNC and Commonality

product variants

Part number count can be assessed:

 PNC refers to the total number of unique part numbers required to manufacture all product configurations

Commonality is the % of part numbers that are common between two or more module variants:

%C_n: % of parts used by at least n variants

1000 - Valve body - before

25/03/2015

1000 - Valve body - after

12 stainless steel parts

25/03/2015

Modular project – commonality comparison

Application commonality	Current Portfolio	New	
No. BOM lines (module variant level)	133	123	
N° of common modules	52	74	43%
WATER vs HF	45%	89%	98%
Full range commonality	39%	60%	54%

Thank you!