

Industry 4.0: la rivoluzione dell'industria?

Prof. Marco Taisch

Department of Management, Economics and Industrial Engineering

Manufacturing Group

La Quarta Rivoluzione Industriale

Prima Rivoluzione

Introduzione di strumenti meccanici di produzione

Seconda Rivoluzione Industriale

Organizzazione del lavoro e produzione di massa grazie all'utilizzo dell'energia elettrica

Terza Rivoluzione Industriale

Produzione ulteriormente automatizzata grazie all'utilizzo in fabbrica di sistemi IT ed elettronici

Quarta Rivoluzione Industriale

Prodotti e processi interconnessi grazie all'utilizzo in fabbrica dell'Internet delle Cose e delle nuove tecnologie digitali

1780

Primo telaio a vapore 1870

Prima catena di montaggio (1870) 1970

Primo PLC (1969)

oggi

TEMPO

L'Italia nel manifatturiero mondiale

_	Le Top 13 potenze manifatturiere nel Mondo Valore aggiunto del settore manifatturiero sul GDP Mondiale *Proiezione anno 2013					
Rank	1990	2000	2010	2014		
1	Giappone	USA	Cina	Cina		
2	Italia	Giappone	USA	USA*		
3	Francia	Cina	Giappone	Germania		
4	Regno Unito	Germania	Germania	Giappone*		
5	Cina	Regno Unito	Korea, Rep.	💨 Korea, Rep.		
6	👀 Korea, Rep.	Italia	Italia	India		
7	Olanda	Francia	Brasile	Italia		
8	Messico	👀 Korea, Rep	Francia	Regno Unito		
9	Svezia	Messico	<u></u> India	Francia		
10	Svizzera	Spagna	Regno Unito	Russia		
11	lndia e	Srasile Brasile	Russia	Srasile		
12	Australia Australia	India	Spagna	Messico		
13	Argentina	Olanda	Messico	Indonesia		

L'importanza del Manufacturing nelle economie mondiali

Manufacturing, value added (% of GDP) - Anno 2014

Fonte Dati: The World Bank

^{*}Ultimo anno con informazione disponibile (2013)

motore dell'economia dei servizi

ICT Megatrends - Technology Push Perspective

Collaboration

- OEM subcontractor collaboration through cloud paradigm
- Trends of contract manufacturing and 'product as a service'
- Customer involvement in product design

Mobility

- Proliferation of mobile devices
- 'On-the-go' and 'Always-on' users
- New businesses (manufacturing apps & manufacturing app store)

Connectivity

- Sensors, controllers, embedded devices a commonplace
- 'Intranet of Things' to 'Internet of Things'
- Bidirectional interaction with realworld objects

Intelligence

- Data analytics and forecasting on-the-fly
- Leveraging cheaper storage and low cost processors
- Better visualization & intelligence on manufacturing data

Human-centric Manufacturing

Internet of Things: Avatar

- According to some estimates there will be 50 billion mobile wireless devices connected to the Internet across the globe by 2020
- The total number of devices connected to the Internet in some way could reach 500 billion.

OECD (2012), "Machine-to-Machine Communications: Connecting Billions of Devices", OECD Digital Economy Papers, No. 192, OECD Publishing.

Internet of Things

IoT growth

Interconnected Manufacturing

Interconnected Manufacturing

From MES to MOS (Mfg Operating System)

M-Apps are aggregated and customized based on user and business needs

Big Data

Innovation waves lifting Business Intelligence / Data Analytics

Cyber-Physical Systems in manufacturing and production workshop Brussels 30th October 2014

Cloud computing

Cyber-physical systems (CPS) enable the future of Manufacturing

Communication everywhere and every time

 Future infrastructure will support the access to information everywhere and every time without any specific installation / parameterization needs

Production and products will be intelligent

- Production resources will be autonomic and will connect to each other (M2M)
- Products know their own production systems

Digital and real world will merge

 Each real object will have a digital shadow, which reflects the characteristics of the real object

^{***} Cyber Physical Systems for Manufacturing and Production
Thomas Runkler, Siemens Corporate Technology
Session: The role of Cyber-Physical Systems (CPS) for manufacturing
Cyber-Physical Systems in manufacturing and production workshop Brussels 30th October

Cognitive Automation

Industrial Internet creates opportunities

New business potential in industrial services

Cyber Security in Manufacturing

Advanced Manufacturing Processes

Advanced manufacturing processes that will be focused on by the 'Factories of the Future' partnership are:

- Additive manufacturing (i.e. 3D Printing)
- Photonics-based materials processing technologies
- Shaping technology
- High productivity & 'self-assembly' technologies (see video)
- Methods for the handling parts, metrology & inspection
- Flexible sheet-to-sheet & roll-to-roll
- Innovative physical, chemical & physiochemical processes
- Replication equipment for flexible, scalable production
- Integration of non-convention technologies

Table 3b: Global CEO Survey: Global drivers of manufacturing competitiveness index ranking

Executives rank key drivers that impact a country's ability to compete in manufacturing

Overall rank (1–10)	Overall index score	Main driver	Most important sub-components	Sub- component rank (1-40)
1	10.00	Talent-driven innovation	Quality and availability of researchers, scientists, and engineers Quality and availability of skilled labor	1 2
2	8.42	Economic, trade, financial and tax system	Tax rate burden and system complexity Clarity and stability of regulatory, tax and economic policies	3 5
3	8.07	Cost and availability of labor and materials	Cost competitiveness of materials Availability of raw materials	11 21
4	7.76	Supplier network	Cost competitiveness of local suppliers Ability of supply base to innovate in products and processes	8 9
5	7.60	Legal and regulatory system	Stability and clarity in legal and regulatory policies Labor laws and regulations	7 13
6	6.47	Physical infrastructure	Quality and efficiency of electricity grid, IT and telecommunications network Quality and efficiency of roads, airports, ports, and railroad networks	
7	6.25	Energy cost & policies	Cost competitiveness of energy Ongoing investments to improve and modernize energy infrastructure	
8	3.99	Local market attractiveness	Size and access of the local market Intensity of local competition	27 36
9	2.48	Healthcare system	Cost of quality healthcare for employee and society Regulatory policies (e.g., pollution, food safety, etc.) that are enforced to protect public health	26 33
10	1.00	Government investments in manufacturing and innovation	Government investments in R&D: science, technology, engineering and manufacturing Private and public sector collaboration for long-term investments in R&D: science, technology, engineering and manufacturing	

Source: Deloitte Touche Tohmatsu Limited and U.S. Council on Competitiveness, 2013 Global Manufacturing Competitiveness Index Note: See Appendix B1 for full list of 40 sub-components and associated ranking

Knowledge Workers

Factories of the future are expected to create a large amount of employment opportunities for citizens. Factory workers are key to competitiveness but challenges such as changing demographics & news skills must be addressed.

Policies should address the following items:

- New approaches to accommodate different demographics
- New technical, educational & organisational ways to increase attractiveness of factory work
- New approaches to development of skills & competences
- New ways to organise factories: Human-centred work environments
- Ways to integrate future factory work into social patterns

Llotja de Mar, Barcelona 3-4 May 2016

"From Global Challenges to Grand Manufacturing Opportunities"

High-level speakers from Bosch, COMAU, Dassault Systemès, IBM, KUKA, McKinsey, PTC, Schneider Electric, SAP, Siemens and many more.

Panel "Digitalizing Manufacturing"

Policy makers and key industry players will discuss strategies such as Industry 4.0 and the Internet of Things

Who am I

- Professor of Advanced and Sustainable Manufacturing
 @ Politecnico di Milano
- 40-people group on Manufacturing Engineering and Management
- Member of the Board of the Factory of the Future cPPP
- Technology Foresight expert
 - Coordination of 4 Technological Foresight Roadmaps on Manufacturing over the last 10 years
- 25 EU Funded projects for a total amount of 12,9 M€ funding since Jan 2009
- Scientific Chairman of the World Manufacturing Forum
- Consultant and advisor to large Italian Enterprises
- To contact me:
 - marco.taisch@polimi.it
 - +39 320 8393662
 - http://www.linkedin.com/in/marcotaisch

